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Abstract In this paper, we propose a temporal filtering
algorithm to obtain the temporally consistent depth video. We
apply a joint multilateral filter to depth video that is based on
three Gaussian distributions: one spatial filter and two range
filters for color and depth similarities. We also perform outlier
reduction in the temporal domain using Gaussian-weighted
least squares fitting method to deal with temporal displace-
ment. Experimental results show that the proposed method
improves depth quality by 1.22 dB on average, compared to
other algorithms due to enhanced temporal consistency.

Keywords Depth video filter · Joint multilateral filter ·
Gaussian-weighted least squares · Temporal consistency ·
Three-dimensional video

1 Introduction

Advancements in three-dimensional (3D) video technologies
enable us to reproduce and experience simulations of reality.
In other words, the gap between the real world and virtual
environments is getting closer. Owing to the rapid develop-
ment of 3D displays, i.e., stereoscopic or auto-stereoscopic
displays, 3D video technologies can provide us a feeling of
“being there,” or presence, from the simulated reality [1,2].
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Figure 1 shows the entire process of the 3D video system,
which includes the whole processes of acquisition, process-
ing, transmission, and rendering of 3D images including N -
view color and depth videos. We produce the 3D video by
utilizing various types of cameras, such as stereoscopic cam-
eras, multi-view cameras, or depth cameras. In case of depth
cameras, the depth map can be acquired directly. Otherwise,
the depth information is estimated by stereo matching algo-
rithms.

Recently, depth image-based rendering (DIBR) has
received industrial attention due to its production of nat-
ural virtual images based on color and depth videos [3]. Vir-
tual images are generated at intermediate virtual viewpoints
between two real cameras. Since depth data accuracy directly
affects the rendering performance of virtual views, accurate
depth information is crucial.

In computer vision and image processing, researches on
acquiring reliable depth information have lasted for sev-
eral decades; yet, there are still many remaining problems.
Among them, the temporal inconsistency problem in depth
data is caused by an independent process for frame-by-frame
of depth sensing methods. As a result, depth data becomes
fluctuated, inducing discomfort of human eyes. Figure 2
shows a depth sequence with three consecutive frames cap-
tured by a time-of-flight depth camera [4]. At the flowerpot-
plant boundary, marked by rectangles, inconsistent depth
data can be observed despite the static scene.

In this paper, we propose a new algorithm for temporally
consistent depth video with the aid of its corresponding color
video. The main contribution of our work is to formulate the
temporal inconsistency problem using Gaussian-weighted
least squares (GWLS). First, we employ joint multilateral
filter with three Gaussian weighting functions to the depth
video. Then, the outlier reduction process using GWLS is
performed to deal with temporal displacement.
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Fig. 1 Three-dimensional
video system
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Fig. 2 Temporal inconsistency
of three consecutive depth maps

The remainder of this paper is organized as follows. In
Sect. 2, we introduce the conventional researches for tempo-
ral consistency of depth video. Section 3 describes the pro-
posed method in detail. In Sect. 4, the experimental results
are exhibited, and finally, conclusion is drawn in Sect. 5.

2 Related works

In the literature, two approaches exist in regard to handling
temporal inconsistency of depth video: dynamic depth esti-
mation anddepth video filtering.

The former extends the energy function for depth esti-
mation to the temporal domain. Tao et al. have presented a
segment-based depth estimation algorithm under the assump-
tion that the 3D scene is composed of many piecewise planes
[5]. Depth fluctuation is reduced by the energy minimization
process of the target segment, which utilizes segments of pre-
vious and successive frames. Larsen et al. have developed
enhanced belief propagation for reconstructing temporally
consistent depth data [6].

The latter, in which the proposed method belongs, per-
forms data-adaptive kernel filtering of depth video. Joint
bilateral filtering is prominent method in this category [7].
The joint bilateral filter (JBF) exploits spatial and range
weighting functions derived from the coordinate distances
and photometric similarity between a target pixel and its
neighbors.

In the depth map, suppose there exist a target pixel p and
one of its neighbors q. Sp and Sq are depth values at p and
q. In addition, Ip and Iq are the associated color values at p
and q. The new depth value S̃p via JBF is computed by

S̃p =
∑

q∈� Sq · f (‖p − q‖) g
(∥
∥Ip − Iq

∥
∥
)

∑
q∈� f (‖p − q‖) g

(∥
∥Ip − Iq

∥
∥
) (1)

where f and g indicate spatial and range filters, respectively.
� is the local kernel size. If Gaussian distribution is used to
model such weighting functions, they are represented by

f (x) = exp

(

− x2

2σ 2
f

)

, g (x) = exp

(

− x2

2σ 2
g

)

(2)
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where σ f and σg are standard deviations of f and g, respec-
tively.

Several algorithms using JBF have been proposed. Lai et
al. have employed iterative joint multilateral filtering (JMF)
which adds hard-thresholding of depth data to the conven-
tional JBF [8]. Yang et al. have introduced a modified JBF
(MJBF) [9]; this method puts an argument of the minimum
depth when determining one of the 4-connected neighboring
depth candidates.

Recently, a 3D JBF-based approach regarding temporal
consistency has been proposed [10]. Specifically, filtering is
extended to the temporal domain to reduce temporal fluctu-
ation. Range filters for color and depth data are adaptively
applied based on depth distribution inside the filter kernel.
However, lack of handling temporal motion causes motion
blur artifacts.

3 Proposed methods

In this section, we describe a JBF-based algorithm for tem-
porally consistent depth video. Unlike other algorithms, the
proposed method takes motion information into account, tar-
geted for dynamic objects and moving camera environment.

3.1 Joint multilateral filter

In general, depth video accuracy is critical in many 3D video
applications. Although JBF reduces depth errors near object
boundaries, the frame-to-frame depth data still fluctuates.
Thus, we use a different approach to improve temporal con-
sistency, applying JMF.

Under the assumption that the color discontinuity can be
used for correcting depth discontinuity, JMF exploits three
Gaussian distributions: one spatial filter and two range filters
which observe photometric and depth similarities. The new
depth value at position p in time t S̃p,t is calculated by

S̃p,t = arg min
d∈Nd

∑
q∈�

∑
n∈� Wq,n · Cq,n,d

∑
q∈�

∑
n∈� Wq,n

(3)

where t and n represent target and neighboring frames.
� is the temporal kernel size. Nd is a set of depth can-
didates, d, which includes 4-connected neighbors of Sp,t

and additional two neighbors, Sp,t−1 and Sp,t+1. In order
to obtain clear depth boundary without blurring artifacts,
the filtered depth value is determined by one of the six
candidates as described in (3). Wq,n is defined as fol-
lows:

Wq,n = f (‖pt −qn‖) gI
(∥
∥Ip,t − Iq,n

∥
∥
)

gS
(∥
∥Sp,t −Sq,n

∥
∥
)

(4)

where gI and gS represent range filters for color and depth
similarities. Euclidean distance is used for color similar-
ity. We used a truncated linear model as a cost function.
Since the truncated linear model allows for depth discon-
tinuities, the cost function is robust, becoming constant
as the difference becomes large. The cost function Cq,n,d

using a truncated linear model is calculated as follows:

Cq,n,d = min
(
λL ,

∥
∥Sq,n − d

∥
∥
)

(5)

where λ is a constant to reject outliers. L denotes the depth
range and it is typically set to 256 since depth maps are rep-
resented by 8-bit gray scale. In the proposed algorithm, the

Fig. 3 Filtering process of the
proposed method
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cost linearly increases based on the distance between the
depth candidate d and Sq,n up to λL that controls when the
cost stops increasing. Figure 3 shows the filtering process of
the proposed method with a filter radius 2 in the temporal
domain.

3.2 Outlier reduction in temporal domain

The simple extension of JMF to the temporal domain is not
sufficient for dynamic scenes due to motion blur and temporal
outliers, as shown in Fig. 4. Figure 4b is obtained by Depth
Estimation Reference Software (DERS) which uses the graph

Fig. 4 Filtering errors of the
simple JMF. a Original color
image. b Result for DERS. c
Result with outlier (color figure
online)

 
(a)

 
(b)

 
(c)

Fig. 5 Images captured by a
depth camera. a Color image. b
Depth map (color figure online)
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Fig. 6 Average depth data of
four blocks
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cut optimization [11]. In Fig. 4c, depth data inside the object
are deformed due to temporal outliers.

In order to reduce temporal outliers, initially we add a
range filter for depth similarity; ample depth differences can
be removed including temporal outliers. It is defined as fol-
lows:

gS
(∥
∥Sp,t − Sq,n

∥
∥
) = exp

(

−
∥
∥Sp,t − Sq,n

∥
∥2

2σ 2
S

)

(6)

where σS represents the standard deviation of depth.

As an additional process of temporal outlier reduction,
we exploit Gaussian-weighted least squares (GWLS) fitting
method. We assume that in static areas, color (or depth) data
at the same position linearly change in the temporal domain.
Hence, the estimate of linear model coefficients can be calcu-
lated. Another assumption is that estimation of linear model
coefficients depends on color (or depth) difference and tem-
poral distance with respect to the data at time t . Therefore, we
adopt GWLS fitting method where the Gaussian weighting
factor is included in the fitting process.

(a)

(b)

(c)

(d)

Fig. 7 Effect of the depth video filter on depth sequence captured by the time-of-flight depth camera for 170th, 171st, and 172nd frame. a
Preprocessed depth sequence. b Result for JMF. c Result for 3D JBF. d Result for the proposed method
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To illustrate the GWLS fitting process, suppose we have
color (or depth) data that can be modeled by a first-degree
polynomial as follows:

y = b1x + b2 (7)
where x and y represent time coordinate and color (or depth)
data within the temporal kernel size �, respectively. In order
to solve this equation for the unknown coefficients b1 and b2,
suppose that the system SSE (sum of square error) is defined
as the summed square of the residuals as follows:

SSE =
∑

n∈�

wn {yn − (b1xn + b2)}2 (8)

Since such a process minimizes S, the coefficients are deter-
mined by differentiating SSE with respect to each parameter,
i.e., b1 and b2, with setting each result to zero.

∂SSE

∂b1
= −2

∑

n∈�

xnwn {yn − (b1xn + b2)} = 0

∂SSE

∂b2
= −2

∑

n∈�

wn {yn − (b1xn + b2)} = 0 (9)

From the simultaneous equation, we obtain b1 as follows:

b1 =
∑

n∈� wn
∑

n∈� wn xn yn −∑
n∈� wn xn

∑
n∈� wn yn

∑
n∈� wn

∑
n∈� wn x2

n −{∑
n∈� wn xn

}2

(10)

Solving for b2 using the b1:

b2 =
∑

n∈� wn yn − b1
∑

n∈� wn xn
∑

n∈� wn
(11)

Here, Gaussian weights are calculated as follows:

wn = exp

{
‖xn − xt‖2

2σ 2
x

}

exp

{
‖yn − yt‖2

2σ 2
y

}

(12)

where xt and yt are time coordinate and color (or depth) data
at time t .

We obtain the estimated linear model from the above
process. In order to distinguish temporal outliers, we cal-
culate the distance between each point and the fitted line. If
the distance is larger than a certain threshold, the point is
regarded as an outlier. The threshold is defined as TGW L S

which represents the distance between the data coordinates
at time t and the fitted line as follows:

TGW L S = |b1xt − yt + b2|
√

b2
1 + 1

(13)

The GWLS fitting process is performed to both color and
depth data. Frames containing temporal outliers for color
and depth data are excluded and the remaining frames are
used for the filtering process.

4 Experimental results and analysis

In order to evaluate the proposed method, we acquire depth
videos from both active and passive sensor-based method. We
applied MJBF, JMF, 3D JBF, and the proposed method for
comparison. The standard deviations of the proposed method
were set to 10 and 255 for color and depth, respectively.
Through several experiments, we have confirmed that we
obtained the best depth quality when the constant parameter
λ for outlier rejection is set to be 0.1. In other words, we
regard the depth discontinuity as 10 % of the depth range.

4.1 Experiments for active sensing method

We conducted experiments using the Kinect depth camera
with a built-in structured light sensor, which captures both
color and depth images in 640×480 resolution. Since the cap-
turing process of the Kinect depth camera has difficulties in
some areas, such as occlusion areas caused by different view-
points of the sensor transmitter and receiver, black-colored
areas, slanted, or shiny surface, etc., the depth map presents a
lot of holes with black intensity. Therefore, these holes must
be filled before we apply the proposed algorithm. In these
experiments, we used an in-painting algorithm proposed by

Table 1 Variances of depth data for 100 frames

Area Original Proposed method

1 101.3260 3.8489

2 232.0264 69.4549

3 571.6297 510.8932

4 13.3535 7.4868

Table 2 Average PSNR of filtering results with depth video using
DERS

Method Filter radius Sequence

Undo_Dancer Mobile

DERS N/A 38.6973 29.3727

MJBF 1 39.0275 29.4972

2 40.7222 29.6723

3 40.7386 29.7597

JMF 1 38.6618 29.4971

2 38.6652 29.5862

3 38.5531 29.6783

3D JBF 1 39.6497 29.4717

2 39.9297 29.3825

3 40.0300 29.7063

Proposed method 1 40.1845 29.7258

2 41.5713 29.8434

3 41.7083 29.8589
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Telea as a preprocessing step since this is very powerful for
recovery of lost or corrupted parts of the image data [12].
Figure 5 shows input color and preprocessed depth images
captured by the depth camera.

In order to quantitatively verify the improvement of tem-
poral consistency, we have measured the amount of depth
fluctuation by calculating average depths in the 4 × 4 block
as denoted in Fig. 5b.

Figure 6 demonstrates average depth values of four blocks
specified in Fig. 5b. The dotted line and the solid line repre-
sent the preprocessed depth data and the results for the pro-
posed method, respectively. Figure 7 illustrates the filtering
results of three consecutive depth sequences. The variance of

depths for 100 frames is given in Table 1. From such results,
we verified that the proposed method reduces depth fluctua-
tion, accomplishing temporal consistency.

4.2 Experiments for passive sensing method

Regarding the passive sensing method, we initially per-
formed depth estimation by DERS, then applied filtering
algorithms. The original and filtered depth videos were com-
pared in terms of peak signal-to-noise ratio (PSNR). We
have evaluated our algorithm using “Undo_Dancer” and
“Mobile” sequences provided by Nokia and Philips, respec-
tively. They are synthetic including ground truth depth data

 
(a)

 
(b)

 
(c)  

 
(d)

Fig. 8 Effect of the depth video filter on “Undo_Dancer” for 24, 25, and 26th frame. a Original depth sequence. b Result for JMF. c Result for 3D
JBF. d Result for the proposed method
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Table 3 Average PSNR of filtering results with deformed depth video

Method Filter radius Sequence

Undo_Dancer Mobile

Noise N/A 27.0573 27.0802

MJBF 1 36.1632 34.2594

2 41.6712 37.2594

3 40.9638 37.8596

JMF 1 27.5580 27.6017

2 27.7825 27.8387

3 27.8856 27.9474

3D JBF 1 30.8803 31.1158

2 31.3984 31.5470

3 31.5015 31.6247

Proposed method 1 40.0543 40.8923

2 43.5310 39.8319

3 43.2088 38.6740

captured in moving camera environment [13,14]. The reso-
lutions are 1,920×1,080 for “Undo_Dancer” and 720×540
for “Mobile.”

The average PSNR for 200 frames is shown in Table 2.
From the results, we verified that the proposed algorithm
achieves better depth quality compared to conventional algo-
rithms. With a filter radius 3, gains of average PSNR were
1.75, 0.53, 1.67, and 0.92 dB compared to DERS, MJBF,
JMF, and 3D JBF, respectively.

Figure 8 shows the effects of the depth video filtering by
comparing the depth sequence with three consecutive frames.
As shown in Fig. 8d, we proved that the proposed method
clearly reconstructs the object boundary and improves tem-
poral consistency compared to other methods.

In order to further evaluate the performance of the
proposed method, we conducted experiments using the
deformed depth video by additive Gaussian noise with mean
0 and standard deviation 16. Then, we measured PSNR
between the ground truth depth video and the filtering results.
Table 3 shows average PSNR of filtering results for 200
frames with deformed depth video. As shown in Table 3,
the proposed method outperforms the conventional methods.
This means that the noise-reducing effect of the proposed
method was better than other methods.

5 Conclusions

In this paper, we proposed a temporal filtering algorithm for
the depth video using temporal outlier reduction. We applied
Gaussian-weighted least squares fitting method to deal with
temporal displacement. From our experimental results, we
have shown that the proposed method improves the depth

quality by 0.91 dB for the depth video obtained by DERS
and 8.65 dB for the deformed depth video on average, com-
pared to the conventional algorithms. In terms of temporal
consistency, the proposed method reduced depth data fluctu-
ation successfully.
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